ATAR PHYSICS UNITS 3 & 4 **YEAR 12** 2017 2 Physics Units 3 & 4 # Structure of this paper | Section | Number of questions available | Number of questions to be answered | Suggested
working time
(minutes) | Marks
available | Percentage of exam | |--|-------------------------------|------------------------------------|--|--------------------|--------------------| | Section One:
Short answer | 12 | 12 | 50 | 54 | 30 | | Section Two:
Extended answer | 7 | 7 | 90 | 90 | 50 | | Section Three:
Comprehension
and data analysis | 2 | 2 | 40 | 36 | 20 | | | | | Total | 180 | 100 | ## Instructions to candidates - 1. The rules for the conduct of Western Australian external examinations are detailed in the Year 12 Information Handbook 2017. Sitting this examination implies that you agree to abide by these rules. - 2. Write answers in this Question/Answer Booklet. - 3. When calculating, or estimating answers, show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning In calculations, give final answers to three significant figures and include appropriate units where applicable. In estimates, give final answers to a maximum of two significant figures and include appropriate units where applicable. - 4. You must be careful to confine your responses to the specific questions asked and follow any instructions that are specific to a particular question. - 5. Additional working space pages at the end of this Question/Answer booklet are for planning or continuing an answer. If you use these pages, indicate at the original answer, the page number it is planned/continued on and write the question number being planned/continued n the additional working space page. # **Section One: Short response** 30% (54 Marks) This section has **11** questions. Answer **all** questions. Write your answers in the space provided. Suggested working time for this section is 50 minutes. Question 1 (2 marks) A wire is conducting a DC current of 1.50 A. At point X a magnetic flux density of 3.86 x 10^{-6} T is detected. Calculate the distance between the current carrying wire and point X. You can ignore the effects of the Earth's magnetic field in this question. Question 2 (3 marks) Two point charges are shown in the diagram below. Their relative charges are -2Q and +Q. On the diagram show the relative shape of the net electric field established around and between the point charges. You should draw at least 11 field lines on the diagram. Question 3 (4 marks) - (a) Give one reason why light cannot modelled as a mechanical wave. - (b) Describe one piece of evidence that both supports the photon model of light and undermines the wave model. Young's double slit experiment produces a series of light and dark bands on a piece of photographic film when monochromatic light is passed through both slits. If the intensity of the light source is reduced so that only one photon at a time passes through the slits the same pattern is produced on the photographic film but it takes much longer to develop. If the experiment is then repeated with one slit covered, the pattern on the photographic film does not appear. (c) Explain how these observations undermine the photon model of light. ## **Question 4** The diagram shows a uniform ladder of mass 20.0 kg and length 5.00 m resting on firm ground and against a frictionless wall. Friction acts at the base of the ladder from the ground as shown to stop the ladder collapsing. The force from the wall (\mathbf{F}_{wall}) and friction both act in the horizontal and are in equilibrium. A person of mass 80.0 kg is standing on the ladder 3.50 m from the base. A normal reaction force at the base of the ladder and the two weight forces act in the vertical direction on the ladder. The ladder makes an angle of 65.0° with the ground. a) Calculate the force of friction acting on the ladder in the position shown. (4 marks) b) If the angle that the ladder makes to the horizontal is changed to 45.0° how would this change the magnitude of friction required to maintain equilibrium. The friction would: Increase Stay the same Decrease Insufficient data to determine Circle a response and explain your choice: (4 marks) Question 5 (6 marks) The diagram shows two charged spheres. Each sphere has a weight of 4.70 N. Sphere A has a charge of +2.50 μ C and sphere B has a charge of -2.50 μ C. They are separated by 20.0 cm between their effective point charge locations. Each sphere is suspended from a fine string whose mass can be ignored. In this situation $\theta_1 = \theta_2$ which is the angle each string makes to the vertical. a) Determine the angle θ_1 to the nearest degree. (4 marks) b) If the charge of sphere A is changed to +1.00 μ C and sphere B is changed to -6.25 μ C, describe what will happen to the values of angle θ_1 and θ_2 . (2 marks) Question 6 (7 marks) The energy level diagram below for a simple atom is shown below. a) An atomic electron in energy level E2 absorbs a photon which excites it to E5. Calculate wavelength of this photon. (4 marks) b) Explain how energy is conserved if an atomic electron at E5 can de-excite to E1(the ground state), (1 mark) c) Explain how energy would be conserved if a 14.0 eV photon collided with an atomic electron in the ground state (E1). (2 marks) | 8 | |--------------------------| | Additional working space | NAME | TEACHER | |---|--| | Question 7 | (2 marks) | | A proton has been accelerated to 95.0% of the speed | of light in the Large Hadron Collider. | A proton has been accelerated to 95.0% of the speed of light in the Large Hadron Collider. Calculate its total energy. Question 8 (4 marks) An artificial satellite has been put into a circular polar orbit around the planet Venus. Venus has a radius of $6.052 \times 10^6 m$. The satellite is at an altitude of $1.098 \times 10^6 m$ and orbits the planet every 111 minutes. Calculate the mass of Venus based on this data. Question 9 (10 marks) A car of mass 2200 kg is moving over a hill which has a profile that is a section of a circle. The radius of the circle is 29.0 m and the car is moving at 54.0 km h⁻¹ at the top of the hill. a) Construct a vector diagram in the box above. Show the forces acting on the car and the net force. (3 marks) b) Calculate the normal reaction force on the car from the hill. (5 marks) c) The apparent weight is equal to the magnitude of the normal reaction force experienced by the car. If the car goes over the top of hill at a slower speed the apparent weight will: (circle a response) Increase Stay t Stay the same Decrease Impossible to determine Explain your response. You should refer to your vector diagram. (2 marks) 11 **Question 10** (4 marks) A telecommunications company want to put an artificial satellite into a circular orbit at a fixed altitude around the Earth. The owner of the company wants the satellite to a have a range of orbital speeds. Explain why this is not possible. You must refer to physics principles and equations that consider gravitational field strength and centripetal acceleration. **Question 11** (4 marks) The de Broglie wavelength of a proton used in a diffraction experiment is 3.42 x 10⁻¹⁰ m. a) Calculate the speed of the proton. Ignore relativistic effects. (2 marks) b) Is it possible to achieve an interference pattern by diffracting protons? Explain briefly. (2 marks) # **End of Section One** | Additional working space | | |--------------------------|--| Section Two: Problem-solving 50% (90 Marks) NAME______ TEACHER _____ This section has **seven (7)** questions. You must answer **all** questions. Write your answers in the space provided. Suggested working time for this section is 90 minutes. Question 12 (17 marks) A stone of mass 521 g is thrown from a building of height 30.0 m. The stone is launched with an angle of elevation of 38.0° above the horizontal. It takes a time of 3.15 s for the stone to reach ground level. You can ignore air resistance for this question. a) Calculate the initial launch speed **u** of the stone. (4 marks) | For the following calculations use a numerical value of 9.60 m s ⁻¹ for the initial lau if it is required. | unch speed of stone | |---|------------------------------| | b) Calculate the horizontal range of the stone. | (2 marks) | | c) Calculate the velocity of the stone after 2.50 s of flight. | (5 marks) | | d) Show that the maximum height reached by the stone is approximately 1.8 | 8 m
(3 marks) | | e) Calculate the work done on the stone by the Earth's gravitational field in t
launch to reaching ground level. | the motion from
(3 marks) | Question 13 (10 marks) The diagram shows the side view of a DC electric motor. A square coil is placed flat in the uniform magnetic field between the North and South magnetic poles. Current direction in the coil is shown on the sides adjacent to the magnetic poles. The commutator and carbon brushes are also shown. a) In which direction will the coil turn from this start position? (1 mark) b) Explain the function of the brushes and the function of the commutator. (3 marks) (2 marks) c) On the diagram above, use the symbols ● and ⊗ to sketch the location of the coil sides adjacent to the magnetic poles after approximately 30° of rotation from this start position. Put arrows on your symbols to indicate the direction of magnetic force acting on them. | 10 | | | |----|---|--------------------| | d) | At this new position after approximately 30° of rotation from the start position; determine torque value of the motor as a percentage of maximum torque. | ne the | | | torque value or the motor as a percentage or maximum torque. | (2 marks) | | | | | | | | | | | | | | | | | | e) | A single 121 mm length of wire, adjacent to one of the magnetic poles, experiences a magnitude of force when a current of 5.30 A is present. Calculate the magnetic flux de | 0.0280 N
ensity | | | between the poles. | (2 marks) | | | | , | Question 14 (13 marks) Nitrogen-14 ions (N³-) of mass 2.33×10^{-26} kg and a relative atomic charge of +3 are accelerated from rest in a potential difference established between 2 charged parallel plates. The parallel plates have a potential difference of $5.00 \times 10^3 V$ across a gap of 8.00 cm. You can ignore the effects of gravity and air resistance in this question. a) Calculate the electric field strength between the parallel plates. (2 marks) b) Calculate the magnitude of the electric force that acts on the Nitrogen ions in this electric field. (2 marks) c) Calculate the maximum speed reached by the Nitrogen ions as they move between the parallel plates. (4 marks) The nitrogen ions are fed into a uniform magnetic field within a mass spectrometer. The ions enter at a speed of 4.54 x 10⁵ m s⁻¹. The magnetic field has a uniform flux density of 123 mT. The set up and the direction of the magnetic field is shown in the diagram below. Vacuum chamber of mass spectrometer – magnetic field indicated d) Calculate the radius of the path taken by the nitrogen ions in the mass spectrometer. (3 marks) e) Explain what is causing the nitrogen ions to go into circular motion. You must refer to physics principles and equations in the formulae and data booklet. (2 marks) Question 15 (13 marks) A spacecraft of rest mass $9.00 \times 10^4 \ kg$ is moving away from the Earth at a constant speed. a) The crew of the spacecraft determine that it takes them 1.10 years to reach the star Alpha Centauri. Observers on Earth state that it took the spacecraft 4.50 years to complete the journey. Determine the speed of the spacecraft in the reference frame of Earth. (3 marks) b) The crew of the spacecraft agree with the velocity calculated and part (a) and argue that time recorded on their clocks was correct. They also agree that they could reach Alpha Centauri in a time of 1.10 years. How is the journey time explained in the reference frame of the spacecraft? Explain with reference to physics principles, no calculation is required. (2 marks) c) As the spacecraft goes past Alpha Centauri it changes its speed to a new constant value of $2.31 \times 10^8~m~s^{-1}$ in the reference frame of Alpha Centauri. Calculate the relativistic momentum of the spacecraft at this speed. (3 marks) As the spacecraft is moving away from Alpha Centauri at a speed of 0.770c it fires a mail canister back towards Alpha Centauri. The canister moves at a speed of 0.580c relative to the spacecraft. Spacecraft 0.770c relative to star d) Determine the velocity of the canister in the frame of reference of Alpha Centauri. (4 marks) - e) The mail canister directs a laser beam towards the Alpha Centauri. What is the speed of the laser beam in the reference frame of - (i) The Spacecraft? - ii) Alpha Centauri? (1 mark) Question 16 (7 marks) A car of mass $2.20 \times 10^3~kg$ is in horizontal circular motion on a banked track. The car has a speed of 14.0 m s⁻¹ and is relying on friction to stay at a fixed height on the banked track. The radius of the circle is 32.0 m. The track is banked at an angle of 20.0° to the horizontal. Friction acts from the track onto the car parallel to the track as shown. - a) Construct a vector diagram to the right of the diagram above. Show the forces acting on the car and the net force. - b) Calculate the magnitude of friction acting on the car from the banked track. (5) | 22 | | |--------------------------|--| | Additional working space | NAME______ TEACHER _____ Question 17 (14 marks) The diagram shows the coil ABCD of an AC generator placed between magnetic poles. - The uniform magnetic field of flux density 0.204 T is indicated. - The dimensions of the coil are: AB = DC = 16.0 cm and AD = BC = 10.0 cm - The coil rotates about the axle as indicated as a torque is applied to the pulley. - The coil has 350 turns of wire and is rotated at 751 rpm. DC rotates out of the page a) Calculate the flux contained within the coil ABCD at the instant shown. (2 marks) b) Draw on the diagram the direction of induced current along AB <u>and</u> DC as the coil rotates one quarter of a complete revolution from the position shown. (1 mark) | c) | To get the coil to turn a torque is applied on the pulley. If a current flows through the ex circuit, a larger torque is required to rotate the pulley than if no current flows. Explain w the case. | ternal
hy this is | |----------|--|----------------------| | Δn | y three | (3 marks) | | ΑΠ | y unee | d) | Calculate the magnitude of the peak EMF from the AC generator. | | | <u> </u> | Calculate the magnitude of the peak Livil from the AO generator. | (3 marks) | e) On the axes shown below, sketch the shape of the EMF output for this generator as it rotates one full turn from the initial position shown. Add a suitable numerical time scale on the time axis and label your curve '751 rpm'. (3) f) Sketch a second shape of the emf output for a rate of rotation of 1502 rpm and label this curve '1502 rpm'. (2) Question 18 (16 marks) A photoelectric effect experiment was performed in which a monochromatic light beam was shone onto a clean metal surface. The wavelength of the incident beam was varied and the maximum kinetic energy of the emitted photoelectrons was recorded in the table below. | Wavelength (µm) | Light Frequency (Hz) | KE (max)
photoelectrons (eV) | KE (max) (J) | |-----------------|-------------------------|---------------------------------|--------------------------| | 750 | 4.00 x 10 ¹⁴ | 0.22 | 3.52 x 10 ⁻²⁰ | | 587 | | 0.67 | | | 506 | | 0.98 | | | 444 | | 1.35 | | | 400 | 7.50 x 10 ¹⁴ | 1.63 | 2.61 x 10 ⁻¹⁹ | The equation that governs this relationship is: $$E = hf + W$$ $E = maximum \ kinetic \ energy \ of \ photoelectrons \ (J) \qquad f = the \ frequency \ of \ the \ incident \ light \ beam \ (Hz)$ $W = the \ work \ function \ of \ the \ metal \ (J) \qquad \qquad h = Planck's \ constant$ a) Complete the second column in the table for light frequency (Hz). Two values have been done for you. (1 mark) b) Complete the fourth column for the maximum kinetic energy of photoelectrons (joules). Two values have been done for you. (1 mark) c) Plot the data from the table onto the graph paper. Photon frequency (Hz) should be plotted on the x-axis. Maximum kinetic energy of photoelectrons should be plotted on the y-axis. You must allow a range of -3.0 x 10⁻¹⁹ J to +3.0 x 10⁻¹⁹ J on the y-axis so that you can determine the y-intercept value. Draw the line of best fit. (4 marks) d) Use the gradient of the graph to determine an experimental value of Planck's constant. (3 marks) Questions continued after the graph paper. Custom Graph Spare graph paper is included at the end of this question. If you want to use it, cross out this attempt. | e) | Determine the value of the work function of this metal from the graph and express you answer in electron volts. | |----|--| | | (2 marks) | | f) | Explain why light of wavelength 900 nm would not cause photoelectrons to be emitted from the surface of the metal. | | | Does this experiment indicate that light is behaving as a particle or a wave? Explain your | | 9) | response with reference to physics principles. (2 marks) End of Section 2 | | | LIIU OI SECTION Z | # Additional graph paper if required. 30 Physics Units 3 & 4 Additional working space ## Section Three: Comprehension 20% (36 Marks) This section contains **two (2)** questions. You must answer both questions. Write your answers in the space provided. Suggested working time for this section is 40 minutes. # Question 20 Hadrons and conservation laws of particle physics (18 marks) You have probably heard of the particle accelerator operated by CERN in Switzerland, the Large Hadron Collider or LHC. The LHC is the largest and most powerful particle collider in the world, the most complex experimental facility ever built, and the largest single machine in the world. It consists of a 27-kilometre ring of superconducting magnets with several accelerating structures to boost the energy of the particles along the way. It has been built to study the interactions of sub-atomic particles. Inside the LHC, two high-energy particle beams travel at close to light speed before they are made to collide. The beams travel in opposite directions in separate beam pipes – two tubes kept at ultrahigh vacuum. They are guided around the accelerator ring by a strong magnetic field maintained by superconducting electromagnets. The electromagnets are built from coils of special electric cable that operate in a superconducting state, they conducting electricity efficiently with no resistance or energy loss. This requires the magnets to be cooled to a temperature close to absolute zero. Much of the accelerator is connected to a distribution system of liquid helium, which cools the magnets. Hadrons are subatomic particles that are made from quarks. There are two types of hadrons. **Baryons** – are made from 3 quarks. The only stable baryon is the proton. All other baryons in isolation decay into protons. Even the neutron is unstable outside the nucleus and decays with a half-life of 11 minutes. $${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e + \bar{v}_{e}$$ **Mesons** - are made from 2 quarks – a quark and an anti-quark. There are no stable mesons they rapidly decay into a lepton and a photon (energy). Pions and kaons are mesons that last just long enough to leave tracks in a bubble chamber. Quark properties of charge and baryon number are detailed in the tables at the end of this article. In any particle interaction, total charge is always conserved. **Baryon number** must also be conserved in particle interactions. All anti-quarks have the opposite charge and baryon number of their standard matter counterparts. **Lepton number** must also be conserved in particle interactions. Anti-leptons have a lepton number of -1. There are 3 'generations' of lepton – electron, muon and tau. When leptons are formed from non-leptons they always appear in pairs – a lepton and an anti-lepton of the same generation. E.g. $$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$ **Strangeness** – hadrons that contain strange quarks are called 'strange' particles. They can exist for an unusually long time, which to early particle physicists was very 'strange'. Strangeness number can vary from +3 to -3 according to the number of strange or anti-strange quarks it contains. If an interaction involves the strong nuclear force, then strangeness is conserved but in weak interactions strangeness can be changed by ± 1 or conserved. Quarks and Leptons are collectively known as Fermions and are the building blocks of all matter in the universe. These particles interact with each other by exchanging force particles known as **gauge bosons**. The exchange of gauge bosons governs attraction, repulsion, decay and the conversion between mass and energy. These processes are studied in machines such as the LHC. Tables of some particles are shown below | Lepton | Charge (q _e) | Lepton number | Baryon
Number | |----------------------------|--------------------------|---------------|------------------| | Electron (e ⁻) | -1 | 1 | 0 | | Electron-
neutrino | 0 | 1 | 0 | | Muon (μ^-) | -1 | 1 | 0 | | Muon-neutrino | 0 | 1 | 0 | | Tau (τ ⁻) | -1 | 1 | 0 | | Tau-neutrino | 0 | 1 | 0 | | Quark | Charge (q _e) | Baryon
number | |-------------|--------------------------|------------------| | Up (u) | $+\frac{2}{3}$ | $\frac{1}{3}$ | | Down (d) | $-\frac{1}{3}$ | $\frac{1}{3}$ | | Top (t) | $+\frac{2}{3}$ | $\frac{1}{3}$ | | Bottom (b) | $-\frac{1}{3}$ | $\frac{1}{3}$ | | Charm (c) | $+\frac{2}{3}$ | $\frac{1}{3}$ | | Strange (s) | $-\frac{1}{3}$ | $\frac{1}{3}$ | | Hadron | Quarks | Mass
(MeV/c²) | Baryon
Number | Lepton
number | |-----------------------------|-----------------|------------------|------------------|------------------| | Proton | uud | 938.3 | +1 | 0 | | Neutron | udd | 939.6 | +1 | 0 | | Pion-plus (π ⁺) | $u\overline{d}$ | 139.6 | 0 | 0 | | Sigma-plus | uus | 1189.4 | +1 | 0 | | Charmed Omega | SSC | 1672.0 | +1 | 0 | ## **Questions** a) How are the magnets in the LHC able to operate at high electrical efficiency? Describe the method used and the effect this has on electrical properties. (2) b) Explain whether neutrons could be accelerated by the LHC. You must refer to the accelerating principles of the LHC. (2) c) Identify a meson from the tables of particles. (1) | d) | Is it possible for an electron and a tau-neutrino to be produced from the decay of a pion-plus particle? Explain briefly. | (2) | |-----|--|------------| | e) | In beta-positive decay a proton decays to a neutron, a positron and a third particle X. ${}^1_1p \to {}^1_0n + {}^0_{+1}e + X$ State the properties required of this third particle in terms of charge, baryon number and lepton number. | (3) | | ii. | . State what this third particle is. | (1) | | f) | Determine the mass of the Sigma-plus hadron in kilograms using scientific notation to 3 deciplaces. | mal
(2) | | g) | Determine the "strangeness" of the charmed-omega particle. | (1) | | h) | Is 'strangeness' always conserved in particle interactions? Explain briefly. | (2) | | i) | Identify one type of gauge boson and describe its role in particle interactions. | (^) | #### Question 21 Hubble's Law (18 marks) Hubble's Law is a cosmological observation that provides a basis for the expansion of the universe and is cited to support the Big Bang Theory. Although named after Edwin Hubble the law was first derived by a Catholic priest, Georges Lemaître in 1927. He proposed the expansion of the universe and suggested an estimated value for the rate of expansion. Two years later Edwin Hubble confirmed the law with more accurate data. After Hubble's confirmation, Albert Einstein abandoned his work on the 'cosmological constant'. Einstein originally thought his general relativity equations were incorrect as they predicted either an expanding or contracting universe. The cosmological constant was artificially created to counter the expansion or contraction and get a perfect, static, flat universe. When Hubble discovered that the Universe was actually expanding, Einstein called his faulty assumption of a "static universe" his biggest mistake. In 1931, Einstein made a trip to meet Hubble and thank him for providing the observational basis for modern cosmology. A mathematical statement of Hubble's Law is as follows $$v_{galaxy} = H_0 d$$ $v_{galaxy} = the \ recessional \ speed \ of \ a \ galaxy \ (km \ s^{-1})$ $d = distance \ from \ Earth \ (megaparsecs)$ $H_0 = Hubble's \ constant \ (km \ s^{-1}Mpc^{-1})$ The more distant a galaxy is from our solar system the faster it recedes away from us. The graph shows the recessional velocity of galaxies plotted against the distance of the galaxy from Earth. The gradient of the graph gives Hubble's constant. Note that galaxies do not move through space, space itself is expanding. An array of telescopes on satellites and spacecraft within our solar system are looking deep into space, amassing data to contribute to a fuller picture of Hubble's universe. Redshift data of light from the spectra of stars within distant galaxies enables us to judge the recessional speed of those galaxies. Information from Cepheid variable stars within galaxies allows us to estimate distances to these galaxies. A telescope on the SOHO spacecraft is used to obtain high-resolution images of the solar corona. It is sensitive to electromagnetic radiation of four different wavelengths: 17.1, 19.5, 28.4, and 30.4 nm, corresponding to light produced by highly ionized iron and helium. Our measurement of the Hubble Constant has been refined over recent decades as better measuring equipment has become available. In 2010 the value was set at 70.4 km s⁻¹ Mpc⁻¹ using 7 years of data amassed from the Wilkinson Microwave Anisotropy Probe (WMAP) plus other data. The Planck Surveyor was launched in May 2009. Over 4 years it performed a significantly more detailed investigation of cosmic microwave background radiation than earlier investigations by using radiometers and bolometer technology to measure the CMB at a smaller scale than WMAP. On 21 March 2013, the European-led research team behind the Planck cosmology probe released the mission's data including a new CMB all-sky map and their determination of the Hubble constant which was $67.8 \pm 0.77 \text{ km s}^{-1} \text{ Mpc}^{-1}$. The value of H_0 as of June 2017 was set at 71.9 km s^{-1} Mpc⁻¹. This was determined by the Hubble Space Telescope using multiple images of distant variable sources produced by strong gravitational lensing. | _ | | | | | |----|-----|-----|--------------|-----| | (1 | IΙΔ | sti | \mathbf{a} | ne | | w | uc | ЭU | u | 113 | | | estimate for the age of the universe can be determined by calculating the inverse of the nstant. To do this, you must convert all units to SI format to get an answer in seconds. | Hubble | |----|---|-----------------------| | | te that 1 parsec = 3.26 light years, a light year is the distance light travels in a vacuum in 365 days. | one year | | Qu | estions | | | a) | Explain why Einstein's 'cosmological constant' was not required. | (2 marks) | | b) | The recessional speed of a galaxy was measured as 2.26 x 10 ⁶ m s ⁻¹ from red shift obsof stars in that galaxy. Calculate distance to the galaxy in Mpc (megaparsecs). Use a valuable's constant of 71.9 km s ⁻¹ Mpc ⁻¹ . | | | c) | The passage refers to 'CMB'. Explain what 'CMB' is in this context and whether it supposing Bang Theory or not. | orts the
(2 marks) | | | | | | d) | Which part of the electromagnetic spectrum is the EIT telescope on the SOHO spacec observing? Refer to the formulae and data booklet, electromagnetic spectrum. Explain | | |----|--|-----------| | e) | Show that a distance of 1 parsec is approximately $3\times 10^{16}m$ | (2 marks) | | f) | The WMAP data from 2010 gives the Hubble constant a value of 70.4 km s ⁻¹ Mpc ⁻¹ . Ca age of the universe using this value as a basis. State your final answer in billions of years of the universe using this value as a basis. | | | g) | Data from 2013 gave a Hubble constant value of 67.8 ± 0.77 km s ⁻¹ Mpc ⁻¹ . Would this n universe older or younger than it was estimated to be in 2010 based on the WMAP dat Explain briefly. | | The following photograph represents a galaxy as a source of electromagnetic waves with relative motion left. h) Show a location on the edge of the photograph that receives 'red-shiffed' waves and label it "red shift". (1 mark) i) Describe how the wave speed differs at this location, compared to a location receiving 'blue-shifted' waves? (1 mark) j) An alternative to the Big Bang Theory of the universe is the "steady state theory" although it is not widely accepted. Describe two (2) features of the steady state theory. (2 marks) # **END OF EXAMINATION** | Additional working space | | |--------------------------|--| Additional working space | |--------------------------| # **Acknowledgements** #### **Question 20** Adapted from https://en.wikipedia.org/wiki/Large_Hadron_Collider ## **Question 21** https://commons.wikimedia.org/wiki/File:Doppler_effect.svg Public domain https://commons.wikimedia.org/wiki/File:Hubble_constant.JPG?uselang=en-gb Creative Commons Attribution-Share Alike 3.0 unported licence.